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Alterations of the human gut microbiome
in multiple sclerosis
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The gut microbiome plays an important role in immune function and has been implicated in

several autoimmune disorders. Here we use 16S rRNA sequencing to investigate the gut

microbiome in subjects with multiple sclerosis (MS, n¼ 60) and healthy controls (n¼43).

Microbiome alterations in MS include increases in Methanobrevibacter and Akkermansia and

decreases in Butyricimonas, and correlate with variations in the expression of genes involved in

dendritic cell maturation, interferon signalling and NF-kB signalling pathways in circulating

T cells and monocytes. Patients on disease-modifying treatment show increased abundances

of Prevotella and Sutterella, and decreased Sarcina, compared with untreated patients.

MS patients of a second cohort show elevated breath methane compared with controls,

consistent with our observation of increased gut Methanobrevibacter in MS in the first cohort.

Further study is required to assess whether the observed alterations in the gut microbiome

play a role in, or are a consequence of, MS pathogenesis.
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M
icroorganisms in the human gut encompass hundreds
to thousands of bacterial, archaeal, viral and
fungal species, making the human intestinal lumen a

rich and dense source of antigenic diversity1. The gut
mucosal immune system samples and processes these microbial
antigens, potentially driving the expansion of particular
immune subsets or generating specific immune repertoires2.
Thus, the intestinal microbiome is an important entity within
the host that influences immune responses both locally and
systemically.

The gut microbiome has been implicated in numerous
immunologic disorders, including multiple sclerosis (MS),
inflammatory bowel disease, type 1 diabetes and rheumatoid
arthritis3–5. In experimental autoimmune encephalomyelitis
(EAE), a murine model for MS, altering the gut microbiome
modulates central nervous system (CNS) autoimmunity.
In a relapsing–remitting mouse model of spontaneous EAE,
transgenic SJL/J mice raised in germ-free conditions were
protected against developing the disease, while the introduction
of commensal microbiota into the gut restored susceptibility6.
While gnotobiotic mice are relatively immunocompromised due
to lack of microbial stimulation promoting immune maturation,
specific association of germ-free mice with defined commensal
species has been shown to modulate the development and severity
of EAE. Segmented-filamentous bacteria (SFB) drive expansion of
Th17 cell populations and generation of interleukin (IL)-17 in
the gut7. Mono-colonization of the gut of C57BL/6 mice with
segmented-filamentous bacteria promotes Th17 accumulation in
the spinal cords of mice and induces the development of EAE8.
Conversely, treatment of C57BL/6 mice with a polysaccharide
from the organism Bacteroides fragilis expands intestinal
Foxp3þ CD4 Tregs and protects against the development of
CNS autoimmunity9,10.

In the case of human autoimmune disease, associations have
been reported with different members of the commensal
microbiota. In a study of 20 MS patients versus 40 healthy
controls, Faecalibacterium, Prevotella and Anaerostipes were
decreased in MS, but the connection between microbiota,
treatment and changes in immunity was not examined11.
Prevotella copri has been associated in proinflammatory
conditions, and has found to be enriched in patients with
new-onset rheumatoid arthritis5, or capable of exacerbating
dextran sodium sulfate colitis in antibiotic-treated C57BL/6 mice.
Butyrate-producing organisms have protective associations with
inflammatory conditions, for example, Faecalibacterium
prausnitzii has been shown to be reduced in inflammatory
bowel disease12. In neuromyelitis optica, a CNS autoimmune
disease directed against aquaporin-4, there are increased
antibodies against gastrointestinal antigens and cross-reactivity
to a protein belonging to Clostridium perfringens, suggesting that
autoimmunity in neuromyelitis optica may be driven by
molecular mimicry against microbial antigens13. Similarly, the
autoimmunity associated with Guillain–Barre syndrome has been
associated with Campylobacter jejuni and the generation of
antibodies to microbial components that cross-react with epitopes
on the surface of the neuron14.

Given the importance of the gut microbiome in immune
function and autoimmune disease, for the present work we
investigated the human gut microbiome in multiple sclerosis
(MS). We identify alterations in the intestinal microbiota
and find correlations with MS-associated immune changes
and treatment. If further studies demonstrate that these
candidate microorganisms play an active role in either
contributing to or ameliorating MS, then there is the
potential to develop new diagnostics and therapies to combat
the disease.

Results
Subject characteristics. Faecal samples were collected from 60
MS patients and 43 healthy controls (Fig. 1); details of the study
population are provided in Table 1 and in Methods. The MS and
control cohorts had comparable demographic characteristics
except that the MS cohort had an increased proportion of males.
All MS patients had relapsing–remitting disease but none had an
active relapse at the time of study enrollment.

Structure and composition of the gut microbiome in MS.
Microbial DNA was extracted from faecal samples and 16S rRNA
gene sequencing was performed on the Roche 454 and Illumina
MiSeq platforms using primers targeting the V3–5 or the V4
variable regions, respectively. We used two sequencing platforms
to avoid platform-specific biases and to provide complementary
information: the Roche 454 platform produces longer sequencing
reads but fewer reads, whereas the Illumina MiSeq provides
shorter reads but greater sequencing depth. The resulting
sequences were then processed using the mothur software
package for quality filtering, removal of artifacts and clustering to
operational taxonomic units (OTUs)15 (Supplementary Fig. 1).
Roche 454 sequencing yielded 1,426,326 reads of B450
nucleotides each, with 426 OTUs identified after quality
filtering. Illumina MiSeq sequencing yielded 11,498,168 paired-
end reads of 150 nucleotides each, with 1,191 OTUs identified
after filtering.

To assess overall differences in microbial community structure
in MS patients and controls, we calculated measures of alpha- and
beta-diversity. Alpha-diversity summarizes the microbial diversity
within each sample, whereas beta diversity measures differences
between samples. Shannon entropy, an alpha-diversity measure-
ment of richness and evenness, was measured at multiple
sequencing depths using rarefaction curves and was similar
between MS patients and healthy controls (Supplementary Fig. 2).
To determine whether overall microbial community structure was
different between MS patients and controls, we calculated
differences in beta-diversity using the weighted and unweighted
UniFrac metric. Statistical analyses of the resulting matrices using
the analysis of molecular variance technique did not reveal
significant differences in overall microbial community structure
between the two groups (Supplementary Fig. 3).

MS-associated microbiota changes at the phylum level. At the
phylum level, the faecal microbiota of both groups was dominated
by Firmicutes and Bacteroidetes, with smaller contributions of
Euryarchaeota, Verrucomicrobia and Proteobacteria. The relative
abundances of microbiota at the phylum level were compared
between the entire MS cohort (both treated and untreated) and
controls (Fig. 2). MS patients had a significantly increased relative
abundance of the phyla Euryarchaeota and Verrucomicrobia
compared to healthy controls (DESeq, Benjamini–Hochberg
adjusted P valueo0.05) by Roche 454 and Illumina sequencing
(Fig. 2a, Table 2).

Because immunomodulatory therapy may skew microbiota
composition, we separately analysed changes in the microbiota in
untreated patients. Both Euryarchaeota and Verrucomicrobia
were similarly elevated in untreated MS patients compared with
controls, although changes in Euryarchaeota were only significant
on the 454 platform, and trended in the same direction on the
MiSeq platform. Consistent with other microbiota studies in
humans, we detected inter-individual variability within control
and MS patients. Thus, we provide rank abundance plots to
depict phylum level abundances in each subject (Supplementary
Fig. 4).
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MS-associated microbiota changes at the genus level. We next
investigated whether relative abundances of the microbiota
differed between MS (untreated and treated) patients and
controls at the genus level (Fig. 2b,c). The relative abundances of
Methanobrevibacter, a genus in the phylum Euryarchaeota, and
Akkermansia, a genus in the phylum Verrucomicrobia, were both

increased in MS patients compared with controls by Roche 454
sequencing and by Illumina sequencing (Fig. 2c, Table 2).
Furthermore, Butyricimonas, which belongs to the phylum
Bacteroidetes had a reduced relative abundance in MS as detected
by both sequencing platforms. These changes were similarly
detected in untreated MS patients compared with controls
(Fig. 2c, Supplementary Fig. 5). In addition Collinsella and
Slackia, both belonging to the phylum Actinobacteria, and
Prevotella, belonging to the phylum Bacteroidetes was decreased
in untreated MS patients as detected by both sequencing
platforms (Table 2; Supplementary Fig. 6). In general, the results
from the two sequencing platforms were concordant, with 98% of
the total microbial abundance composed of shared genera. While
we were able to detect some primer bias (for example, higher
detection of Akkermansia with the MiSeq V4 strategy compared
with the 454 V35 strategy) the MS-related changes generally
remained the same (Supplementary Fig. 7).

Effect of therapy on gut microbiota. We then asked whether
immunomodulatory therapy was associated with an altered
microbiota in treated versus untreated MS patients. We found
that treated patients had increases in the Prevotella and
Sutterella as detected by Roche 454 and by Illumina sequencing
(Fig. 2c, Table 2, Supplementary Fig. 8). Since these genera
are either significantly reduced or show a trend of reduced

Table 1 | Demographics of study population.

Healthy Multiple sclerosis

N¼43 N¼60

Age 42.2±9.61 49.7±8.50

Male (%) 6 (14%) 19 (32%)

Female (%) 37 (86%) 41 (68%)

Body mass index 26.4±6.3 27.2±4.7

Caucasian 43 58

Black 0 2

Hispanic 0 1

Disease Duration NA 12.8±8.3

EDSS Score NA 1.2 ±1.0

Untreated NA 28

Beta-interferon NA 18

Glatiramer acetate NA 14

NA, not applicable

Microbial 16s profiling

Roche 454

MiSeq Illumina

Serologic analysis

Proliferation

cytokines 

Gene expression

profiling

Methane

concentration 

Microbe and host

assays

Sample

collection

Sera

Mononuclear

cells

60 Multiple sclerosis

43 Healthy controls 

41 Multiple sclerosis

32 Healthy controls  

Fecal DNA

Breath

Study subjects

Subject demographics

Dietary survey

Disease characteristics

45 MS

16 HC

18 MS

18 HC

60 MS

43 HC 

41 MS

32 HC

Figure 1 | Study design. Faecal samples were collected from MS patients (n¼ 60) and healthy subjects (n¼43). Microbial DNA was extracted from frozen

faecal samples and 16s rDNA sequencing was performed using Roche 454 and Illumina platforms. Gene expression profiling was performed on circulating

monocytes and T cells from MS patients (n¼ 18) and healthy subjects (n¼ 18) using a Nanostring platform. Peripheral blood mononuclear cells were

collected from MS patients (n¼ 18) and healthy subjects (n¼ 18) to conduct proliferation and cytokine assays in response to specific microbial stimulation.

Sera from MS patients (n¼45) and healthy subjects (n¼ 16) was collected for ELISA-based techniques to capture serologic activity directed against

specific microbes. Breath samples from MS patients (n¼41) and healthy subjects (n¼ 32) were collected from a second subject cohort to determine

breath methane concentrations.
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populations in untreated patients compared with controls, it
suggests that treatment with immunomodulatory therapy may
normalize some of the MS-related changes in the microbiota.
The genus Sarcina was reduced in treated versus untreated
MS patients by both sequencing platforms (Fig. 2b,c).

However, Sarcina levels were similar between untreated
patients and controls, suggesting a treatment-associated effect.
No significant differences in the microbiota were noted when MS
patients treated with interferon therapy were compared with
those treated with glatiramer acetate, although the sample sizes of
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Figure 2 | Compositional differences in faecal microbiota between MS patients and healthy subjects. (a) Relative abundances of Euryarchaeota and

Verrucomicrobia in the faecal microbiota of healthy controls (n¼43, grey bar), all MS patients (n¼60, red) and both untreated (n¼ 28, orange) and

treated MS patient (n¼ 32, blue) subgroups as analysed by two independent sequencing technologies, 454 (top) or MiSeq (bottom). (b) Relative

abundance of prevalent microbiota (41% in any sample group) determined from MiSeq and 454 high-throughput sequencing. (c) Relative abundances of

genera in the faecal microbiota that are significantly altered between healthy controls (n¼43) and MS patients (n¼ 60; MS-effect) or between untreated

(n¼ 28) and treated MS patients (n¼ 32) (disease effect) as analysed by two independent sequencing technologies. Significance was determined by

DESeq and Benjamini–Hochberg corrected P values o0.05 with a false discovery rate threshold of 0.1. Bars represent average, and error bars depict s.e.
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these subsets were not sufficiently powered to evaluate this
comparison.

To determine whether the differences we observed were related
to age, gender or body mass index (BMI), we reanalysed our data
using a multi-factorial model. For all MS patients (treated and
untreated) compared with controls, the differences in relative
abundances for the genera Methanobrevibacter, Akkermansia and
Butyricimonas remained significant with at least one of the
sequencing platforms. We also found that treatment-related
differences in relative abundances for the genera Prevotella,
Sutterella and Sarcina remained significant.

Phylogenetic placement of 16S rRNA sequences. Validating
bacterial identification is important to select the optimal bacteria
to monitor in translational studies, however, partial 16S rRNA
reads do not always provide sufficient information for identifi-
cation to the species level. Thus, phylogenetic placement of 16S
rRNA sequences was used to further identify taxa of interest
and to assess the accuracy of identification using pplacer16

(Supplementary Figs 9 and 10). The representative sequence
from the most prevalent OTU was used for each taxa of interest.
The Methanobrevibacter sequence from our study placed most
closely to referenceM. smithii (placement likelihood (PL)¼ 0.94),
Akkermansia placed most closely to A. muciniphila (PL¼ 1.00),
and Butyricimonas had a greater likelihood of identification as B.
synergistica (PL¼ 0.83) than B. virosa (PL¼ 0.50). For genera
found to be different between untreated MS patients and controls,
Collinsella placed most closely to C. aerofaciens (PL¼ 0.85),
Slackia placed closer to S. isoflavoniconvertens (PL¼ 1.0 than to
S. piriformis (PL¼ 0.76), Prevotella placed closer to P. stercorea
(PL¼ 1.0) than to two different P. copri reference strains
(PL¼ 0.76 and 0.81). For taxa found to be different between
untreated and treated MS patients, Sutterella could not be
resolved between S. stercoricanis or S. wadsworthensis (PL¼ 1.0
and 1.0, respectively) and sequences mapped to the genus Sarcina
placed closest to S. ventriculi (two sequences placing near
S. ventriculi with likelihoods of 0.66 and 0.85). In total, pplacer
was able to identify the most likely genus and species from
currently available reference databases.

Gene expression in peripheral blood T cells and monocytes.
We used the Nanostring immunology panel to measure the
expression of 568 immune-related genes from peripheral blood
derived CD4þ T cells and CD14þ monocytes from a subset of
18 MS patients and 18 controls subjects. Because Methano-
brevibacter was significantly increased in MS patients compared
with healthy subjects, and since Methanobrevibacter has been
previously implicated as a proinflammatory microbe17, we
selected MS patients and healthy subjects from our cohort that
had the highest and lowest populations of Methanobrevibacter.
The demographics and disease characteristics of MS patients and
healthy subjects within this subset were similar to those of the
larger group (Supplementary Table 1).

We found unique immune transcriptional profiles in T cells
and monocytes from MS patients compared with healthy controls
(Supplementary Fig. 11a–c). Ingenuity pathway analysis was
used to identify altered canonical pathways. Both T cells and
monocytes were predicted to have activated interferon, NF-KB,
Toll-like receptor and IL-6 signalling pathways, and decreased
PPARa/RXRa, consistent with pathways previously correlated
with MS18–23 (Fig. 3a, Supplementary Fig. 11d).

We then investigated potential associations between the
MS-related microbiota and immune changes. We correlated
microbial abundance with a set of significantly altered genes
biologically curated from the identified canonical pathways
(Fig. 3b). For T cells from all subjects, we found that both
Methanobrevibacter and Akkermansia had positive correlations
with CASP1, TRAF5 and STAT5B, while Butyricimonas had
negative correlations with these genes (Fig. 3b), which are
implicated in IFN signalling, IL-2 signalling, and PPAR and RXR
activation. Because the correlations between microbial popula-
tions and immune expression levels could driven by the disease,
we examined the correlations within untreated MS patients and
within healthy controls separately. Among untreated MS patients,
we again noted that Methanobrevibacter and Akkermansia had
positive correlations and Butyricimonas had negative correlations
with this set of genes, while the correlations were near
zero among healthy controls alone. Methanobrevibacter and
Akkermansia also had negative correlations with TNFA1P3,

Table 2 | Multiple sclerosis and MS-treatment-associated taxa.

Relative abundances BH corrected P values

454 Illumina HC vs MS HC versus Un Tr vs Untreated

HC All MS Untr MS Tr MS HC All MS Untr MS Tr MS 454 MiSeq 454 MiSeq 454 MiSeq

Phyla

Euryarcheota 8.65� 10� 5 5.48� 10�4 3.36� 10�4 3.12� 10�4 3.66� 10� 3 1.38� 10�2 1.17� 10� 2 8.53� 10� 3 1.38� 10�2 2.74� 10� 2 1.88� 10�2 n.s. n.s. n.s.

Verrucomicrobia 8.06� 10� 3 1.65� 10� 2 2.25� 10�2 5.80� 10� 3 5.30� 10� 2 1.07� 10� 1 1.39� 10� 1 6.18� 10� 2 1.77� 10�5 3.66� 10�3 8.91� 10�4 1.41� 10� 2 n.s. n.s.

Genera

Methanobrevibacter 8.65� 10� 5 5.48� 10�4 3.37� 10�4 3.12� 10�4 3.64� 10� 3 1.37� 10�2 1.16� 10�2 8.40� 10� 3 7.80� 10� 3 2.30� 10� 3 1.28� 10� 2 n.s. n.s. n.s.

Akkermansia 8.06� 10� 3 1.65� 10� 2 2.25� 10�2 5.80� 10� 3 5.29� 10�2 1.07� 10� 1 1.39� 10� 1 6.18� 10� 2 9.00� 10�4 3.45� 10�2 3.20� 10� 3 3.36� 10�2 n.s. n.s.

Butyricimonas 1.16� 10� 3 3.75� 10�4 2.80� 10�4 4.11� 10�4 1.37� 10� 3 5.81� 10�4 4.26� 10�4 7.21� 10�4 3.50� 10� 3 9.50� 10� 3 1.31� 10� 2 6.70� 10�3 n.s. n.s.

Paraprevotella 3.57� 10�4 2.18� 10� 5 0 3.84� 10� 5 3.47� 10� 3 4.65� 10�4 3.44� 10�5 7.73� 10�4 3.45� 10� 2 8.70� 10�3 9.52� 10�2 1.50� 10�3 n.s. n.s.

Haemophilus 3.95� 10� 3 3.32� 10� 3 5.25� 10� 3 2.68� 10� 3 4.61� 10� 3 4.79� 10� 3 7.75� 10� 3 3.83� 10� 3 3.50� 10� 3 2.57� 10� 2 2.10� 10�3 9.60� 10� 3 n.s. 6.00� 10�4

Slackia 1.99� 10� 3 5.50� 10�4 5.00� 10�4 5.56� 10�4 1.62� 10�4 4.77� 10� 5 6.17� 10�5 4.40� 10� 5 3.60� 10� 3 5.21� 10�2 2.5� 10� 5 1.35� 10� 2 6.55� 10�2 n.s.

Collinsella 5.54� 10� 3 4.90� 10� 3 3.61� 103 6.10� 103 2.27� 103 1.52� 10� 3 1.16� 10� 3 1.89� 10� 3 n.s. n.s. 8.19� 10�2 4.30� 10� 3 n.s. 9.20� 10� 3

Megasphaera 1.29� 10� 3 8.18� 10� 3 2.05� 10� 2 1.57� 10� 3 1.46� 10� 3 8.67� 10� 3 2.06� 10� 2 2.45� 10� 3 9.50� 10� 3 n.s. 1.00� 10�4 3.84� 10�2 1.90� 10�7 5.50� 10� 5

Cloacibacillus 4.26� 10� 5 2.64� 10�4 5.93� 10�4 4.41� 10� 5 0 1.06� 10�5 2.34� 10� 5 1.50� 10� 6 3.20� 10�2 n.s. 4.98� 10�2 9.20� 10� 3 6.92� 10�2 3.45� 10� 2

Veillonellaceae_unc 8� 10� 3 6.12� 10�4 9.21� 10�4 3.36� 10�4 1.14� 10� 3 1.91� 10�4 3.56� 10�4 1.12� 10�4 n.s. n.s. 8.51� 10�2 2.38� 10� 2 5.17� 10�2 3.45� 10� 2

Prevotella 1.92� 10�2 7.90� 10� 3 1.23� 10� 3 1.25� 10� 2 2.76� 10�2 3.06� 10� 3 1.23� 10� 3 1.32� 10� 2 n.s. n.s. 7.27� 10� 2 2.80� 10�7 9.02� 10�2 2.80� 10�5

Sutterella 6.40� 10� 3 6.49� 10� 3 1.16� 10�4 8.49� 10�4 1.11� 10�4 1.00� 10�4 1.54� 10�5 1.80� 10�4 n.s. n.s. 7.64� 10� 2 6.80� 10�2 4.20� 10� 3 8.70� 10�3

Clostridia_unc 5.05� 10� 5 1.77� 10�4 3.17� 10�4 5.25� 10� 5 7.51� 10� 2 8.51� 10� 2 8.51� 10�2 9.07� 10�2 8.51� 10�2 n.s. 8.00� 10� 3 n.s. 1.92� 10� 2 8.60� 10�3

Sarcina 2.02� 10� 2 1.20� 10� 2 2.04� 10� 2 5.45� 10� 3 1.45� 10� 2 8.58� 10� 3 1.51� 10� 2 4.11� 10� 3 6.92� 10� 2 n.s. n.s. n.s. 9.00� 10�4 2.52� 10�2

Mollicutes_unc 2.49� 10� 2 1.05� 10� 2 2.02� 10� 3 2.02� 10� 3 3.61� 10� 3 1.08� 10� 3 7.81� 10�4 1.36� 10� 3 8.30� 10� 3 n.s. 3.00� 10�7 n.s. n.s. n.s.

Prevotellaceae_unc 4.99� 10� 3 1.37� 10�4 7.31� 10� 6 1.07� 10�5 2.15� 10� 3 4.22� 10�4 1.40� 10�4 2.37� 10�4 3.00� 10� 10 n.s. 4.40� 10�5 n.s. n.s. n.s.

Holdemania 1.72� 10� 3 3.80� 10� 3 3.69� 10� 3 3.08� 10� 3 4.26� 10�4 4.85� 10�4 4.03� 10�4 5.51� 10�4 4.20� 10� 3 n.s. 4.02� 10�2 n.s. n.s. n.s.

Desulfovibrio 9.48� 10� 5 1.63� 10�4 3.75� 10�4 3.95� 10� 5 1.16� 10� 3 9.31� 10�4 1.65� 10� 3 4.65� 10�4 n.s. n.s. 1.58� 10� 2 n.s. 1.80� 10� 3 n.s.

Peptococcaceae_unc 8.14� 10�5 1.74� 10�4 3.85� 10�4 5.26� 10�5 2.01� 10�4 2.72� 10�4 2.56� 10�4 2.79� 10�4 n.s. n.s 4.03� 10� 2 n.s. 3.30� 10� 2 n.s.

Barnesiella 4.76� 10� 3 2.00� 10� 3 1.35� 10� 3 1.41� 10� 3 1.18� 10� 2 6.55� 10� 3 8.35� 10� 3 5.43� 10� 3 n.s. 1.00� 10�4 1.60� 10� 3 n.s. n.s. n.s.

Acidaminococcaceae_unc 3.45� 10� 3 8.43� 10�4 1.46� 10�4 5.01� 10�4 5.70� 10�4 5.82� 10�5 4.14� 10�5 8.51� 10�5 n.s. 2.57� 10� 2 3.15� 10�2 n.s. n.s. n.s.

Megamonas 8.54� 10� 5 6.34� 10� 5 0 1.25� 10�4 1.20� 10�4 2.79� 10�4 2.66� 10� 6 5.47� 10�4 n.s. 1.80� 10�5 n.s. 1.54� 10�2 n.s. n.s.

Guggenheimella — — — — 3.17� 10� 3 1.62� 10� 3 1.94� 10� 5 3.16� 10� 3 — 3.60� 10�5 — 9.50� 10� 3 — n.s.

Thermoplasmatales_unc — — — — 1.82� 10�6 2.08� 10�5 2.63� 10�5 1.45� 10�6 — 3.45� 10�2 — 1.23� 10� 2 — 1.62� 10�2

Buttiauxella 7.77� 10�5 2.45� 10�4 2.01� 10�4 2.77� 10�4 3.32� 10� 3 1.32� 10� 3 1.41� 10�4 2.49� 10� 3 n.s. n.s. n.s. 1.00� 10� 3 n.s. 1.90� 10� 3

Sporanaerobacter — — — — 8.78� 10�4 6.45� 10�4 1.43� 10�4 1.04� 10� 3 — n.s. — 4.20� 10�4 — 1.00� 10�4

HC, healthy controls; MS, multiple sclerosis; unc, unclassified; Untr, untreated MS patients; Tr, treated MS patients.

The table lists taxa that differ between HC and MS patients, between HC and Untr and between untreated and Tr, detected on two different sequencing platforms, 454 and MiSeq. Significant differences

were tested by DESeq, and P values were adjusted by the Benjamini–Hochberg method. Relative abundances are listed. Values that are significant (Po0.05) on both platforms are in bold. Taxa are listed at

the genus level or at their lowest possible level of classification, followed by unc. Genera that were not detected on a given platform are indicated with a (—). Non-significant P values are listed as n.s.
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a known potent anti-inflammatory cytokine in autoimmune
demyelination, along with NFKBIA previously known to be
underexpressed in MS20,21. Butyricimonas had positive
correlations with these two genes (Fig. 3b).

In monocytes from MS patients, Methanobrevibacter and
Akkermansia had positive correlations with MAPK14, MAPK1,
LTBR, STAT5B, CASP1 and HLA-DRB1, while Butyricimonas
had negative correlations with these genes, which are implicated
in dendritic cell maturation, IFN signalling and TREM
signalling pathways. Among untreated MS patients, Akkermansia
and Butyricimonas had positive and negative correlations,
respectively, with this set of genes, whereas these effects were
not observed in controls (Fig. 3b). Methanobrevibacter and
Akkermansia also had negative correlations with HLA-A, HLA-B
and BCL2 in untreated MS patients.

Since we observed correlations between the abundance of
specific microbes and gene expression in monocytes and T cells
from MS patients, we were interested in determining whether
these organisms might drive an altered immunologic response
in MS patients and controls. Because lipids derived from
Methanobrevibacter are reported to have adjuvant effects24, we
investigated Methanobrevibacter smithii induced proliferation
and cytokine production in human peripheral blood
mononuclear cells (PBMCs), but found no difference in the
response to Methanobrevibacter in MS patients versus controls
or in subjects with high Methanobrevibacter in the gut
(Supplementary Fig. 12).

Relationship of the gut microbiome to humoral responses.
We then examined whether sera from MS patients and healthy
subjects contained antibodies reactive to Methanobrevibacter
or components of Methanobrevibacter. We found anti-
Methanobrevibacter IgM, IgG and IgA antibodies (titre 41:64) as
measured by enzyme-linked immunosorbent assay (ELISA)
against lysates of Methanobrevibacter in 33% of MS patients and
28% of controls, with no differences in anti-Methanobrevibacter
antibody titres between the two groups.

Breath methane in MS. Because Methanobrevibacter is the
dominant methane-producing microbe that inhabits the human
gastrointestinal tract, the likely presence ofMethanobrevibacter in
the gut can be measured indirectly by a breath test, which assesses
exhaled methane by gas chromatography25. Detection of 41
parts-per-million of methane in the breath reflects the presence of
at least 107–108 methanogens per gram of stool and has been
shown to be driven by Methanobrevibacter smithii26. After we
discovered increased Methanobrevibacter in the gut by 16S rRNA
sequencing, we performed a methane breath test on a second
cohort of 41 MS patients and 32 controls to determine whether
we could verify the presence of methane-producing organisms by
a simple and independent in vivo measurement. The second
cohort was chosen to resemble our first cohort (Supplementary
Table 2). We detected the presence of methane in 13/41
MS patients versus. 8/32 controls. MS patients had elevated
levels of breath methane versus controls (8.07±2.46 versus
1.65±0.93 ppm, (t-test, P valueo1.81� 10� 2), consistent with
our observation of increased methanogens in the gut of MS
patients (Fig. 4).

Discussion
Host-commensal interactions have increasingly been shown to
play a role in the induction of autoimmunity both in
experimental animals and human diseases including inflamma-
tory bowel disease, rheumatoid arthritis, type 1 diabetes and
experimental autoimmune encephalomyelitis8,27,28. The origin of

the autoimmune process in multiple sclerosis is still poorly
understood and whether the inciting factors that trigger
inflammation primarily occur in the central nervous system or
in the periphery is unknown. Given that disease concordance in
MS is 25% in monozygotic twins, both genetic and environmental
factors likely contribute to the development of disease29, and the
gut microbiota might be one such environmental factor.
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Figure 3 | Correlations between microbiota abundances and immune

gene expression. (a) Gene expression was measured from circulating

T cells and monocytes by the Nanostring Immunology panel in MS patients

(n¼ 18) and healthy controls (n¼ 18). (a) canonical pathways significantly

altered in MS patients and healthy subjects with an activation z-score4|1.5|

in both T cells (black bars) and monocytes (grey bars) identified by

Ingenuity Pathway Analysis. (b) Altered gut microbiota abundances

correlate with immune gene expression in MS patients. Spearman’s

correlations (s) between the relative abundance of significantly altered

microbes in subject groups and the relative expression of genes from

identified canonical pathways significantly altered between healthy controls

and untreated MS patients. Colour and slope of ellipse indicate magnitude

of correlation, with s value superimposed on ellipse. Subject groups were

either all MS patients and controls together (All), untreated MS patients

alone (MS-U) or healthy controls alone (HC).
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We undertook studies to define the community structure of the
faecal microbiome in MS patients using high-throughput 16S
rRNA gene sequencing. We found alterations at the phylum
level with increases in Euryarchaeota and Verrucomicrobia. At
the genus level, more specific shifts were observed, including
increases of Methanobrevibacter and Akkermansia and reduction
in Butyricimonas. Given that discrepancies may occur due to
variability in primer selection and sequencing reads, we utilized
two separate sequencing methodologies and observed that
the majority of taxonomic shifts were consistent in both
platforms.

Several of the organisms identified in this study as being altered
in MS have been demonstrated to drive inflammation or have
been associated with autoimmunity. The archaeon Methanobre-
vibacter has been implicated in inflammation by its capacity to
recruit inflammatory cells and activate human dendritic cells17

and its role in inflammatory diseases, including periodontitis,
asthma and inflammatory bowel disease24,30,31. In addition,
archaeosomes derived from Methanobrevibacter have potent
adjuvant properties secondary to their unique lipid
structure and have been used as adjuvants for vaccines32.
Methanobrevibacter is distributed throughout the small bowel
and colon and is tightly adherent to the mucosa via regulated
expression of adhesin-like proteins, placing it in close proximity
to the gut-associated lymphoid tissue33. Consequently, when
mucosa-associated (rather than luminal) microbiota were studied
in inflammatory bowel disease, Methanobrevibacter smithii was
increased more than threefold in mucosal samples from patients
with both Crohn’s disease and ulcerative colitis compared to
controls30. Methanobrevibacter smithii is also recovered more
frequently in children with obesity, a known risk factor for the
development of MS in adult life34. Furthermore, in a pilot
study of pediatric multiple sclerosis, children colonized with
Methanobrevibacter had a shorter time to relapse35.

We also found that the phylum Verrucomicrobia was increased
in MS patients and was driven by the genus Akkermansia, which
was also reported in a pilot study of 7 MS patients36. In contrast
to our findings in MS, Akkermansia species have been reported
to be decreased in other autoimmune diseases including
psoriatic arthritis37. Akkermansia has been reported to have
both regulatory and inflammatory properties, and is a
mucin-degrader that converts mucin to short-chain fatty acids
that may mediate the immunoregulatory effects38. Alternatively,
Akkermansia has been correlated to proinflammatory pathways
including upregulation of genes involved in antigen-presentation,
B- and T-cell receptor signalling, and activation of complement
and coagulation cascades39. These proinflammatory features may
be related to its ability to degrade mucus, leading to breakdown of
the gut barrier and increased exposure of resident immune cells
to microbial antigens40.

We found lower abundances of Butyricimonas, a butyrate-
producing genus, in MS patients. Butyrate is a short-chain fatty
acid produced by microbes that induce colonic regulatory
T cells41. Reductions in colonic butyrate can disrupt barrier
function and promote inflammation. Similar to our findings,
reductions in butyrate producers have been noted in numerous
autoimmune and inflammatory diseases including inflammatory
bowel disease, rheumatoid arthritis and type 1 diabetes5,42,43.

We investigated untreated MS patients, to examine the
microbiota independent of MS disease-modifying therapy. We
found that the genera that were altered in the entire MS cohort
(Methanobrevibacter, Akkermansia and Butyricimonas) were also
altered in the untreated population, suggesting that these effects
are not specifically correlated with therapy. Furthermore, within
the untreated MS subset, we observed reductions in genera
belonging to the family Coriobacteriaceae, including Collinsella

and Slackia. Reductions in Coriobacteriaceae have been reported
in relatives of patients with inflammatory bowel disease44.

Patients on disease-modifying therapy had increased
abundances of the genera Prevotella compared with untreated
patients. Although Prevotella has been reported to be increased in
rheumatoid arthritis and inflammatory bowel disease5, Prevotella
has been previously correlated to the intake of high-fibre diets,
whose primary substrate, fibre, can drive the generation of the
immunoregulatory metabolite butyrate45. We found that
Prevotella was low in untreated MS, and that treatment with
disease-modifying therapy was associated with increased relative
abundance of Prevotella. In a smaller cohort of 20 MS patients
compared with 40 controls in Japan, the authors detected a
decrease in Prevotella11 in MS. Given this consistent finding,
future studies investigating the role of Prevotella in MS are
warranted.

We also observed increases in the genus Sutterella and
decreases in Sarcina in MS patients on therapy. Sutterella was
found to be increased in healthy controls compared to patients
with new-onset Crohn’s disease46. Sarcina species are reported to
be increased in the gut microbiota of autistic patients47. Since
immunomodulatory treatment in MS was associated with
increases in relative abundances of Prevotella and Sutterella and
decreases in Sarcina, it is conceivable that treatment may act to
normalize a proinflammatory microbiota.

Our finding that some of MS patients have elevated exhaled
methane, a surrogate for levels of Methanobrevibacter in the gut,
is consistent with our 16S rRNA sequencing results; it would be
interesting to use this rapid, in vivo test to investigate
Methanobrevibacter in larger populations of MS patients. While
we did not measure stool abundance of Methanobrevibacter in
this second cohort, previous studies have shown that the amount
of breath methane strongly correlates with the quantity of
M. smithii in the stool26. In other anatomical sites, the presence of
particular microbial species can be identified based on their
metabolic activity, as is routinely done for diagnosing
Helicobacter pylori presence with a positive gastric urease test.
Future studies employing simultaneous collection of breath, faecal
and blood samples in MS patients will address the potential role
of breath methane as a biomarker in MS.

The gut microbiota are known to modulate host immune gene
expression either by direct contact with cell wall components,
or by secretion of factors that can signal through host receptors

0

1

10

100

B
re

a
th

 m
e

th
a

n
e

 (
p

.p
.m

.)

P < 0.018

MS HC

Figure 4 | Measurement of breath methane production in MS patients

(n¼41) and controls (n¼ 32). Breath methane measured in each subject

is represented on the y axis in parts-per-million on a logarithmic scale. The

mean and s.e.m. are shown by the indicated horizontal lines. 28 of 41 MS

patients and 24 of 32 controls had no detectable breath methane.
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or through epigenetic modifications that may alter methylation or
acetylation of transcriptional promoters48. Microbial colonization
by a single organism or by groups of organisms into the gut of
germ-free mice can modulate the expression of innate and
adaptive immune genes as early as 4 days after microbial
inoculation in varying cellular compartments48. In a study of
inflammatory bowel disease in humans, associations between
microbes and host gene expression were found in innate and
adaptive immune pathways49.

We examined relationships between microbial abundance and
immune genes implicated in MS pathogenesis. Consistent
with the inflammatory properties of Methanobrevibacter and
Akkermansia32–34,36,45–46, we found positive correlations with
these organisms and gene expression in T cells and monocytes
involved in key pathways previously implicated in MS
pathogenesis, including increased expression of the MAPK
family in monocytes (MAPK1 and MAPK14), genes directly
involved in both the initiation phase of innate immunity and
activating adaptive immunity50. In T cells, Methanobrevibacter
and Akkermansia positively correlated with TRAF5, a known
regulator of T-cell activation and known to be overexpressed in
MS, as well as STAT5B, whose expression is indispensible for the
encephalitogenicity of autoreactive CD4þ T cells in EAE50,51.
Methanobrevibacter or Akkermansia negatively correlated with
TNFAIP3, previously shown to have reduced expression in
studies of the MS transcriptome21,50. In the case of Akkermansia,
these relationships were even stronger among untreated MS
patients alone. Butyricimonas had negative correlations with
genes known to be increased in MS among T cells and monocytes,
suggesting that reduction in Butyricimonas is associated
with increased proinflammatory gene expression, however,
directionality cannot be determined from this study. These
correlations were observed among all subjects and in untreated
MS patients, but not in controls alone, suggesting that the
relationship between microbial abundance and gene expression
was MS-specific, but not solely driven by differences between
controls and MS patients. Although we could detect correlation,
we cannot determine the causal direction or conclude whether the
microbes drive immunological changes, or whether the disease or
altered immunity drives changes in the microbiota.

While our investigation of the gut microbiota in MS provides
initial insights into understanding the potential role for the
microbiome in this disease, our study has certain limitations.
First, we cannot assign a direct cause to the associations we
describe in the gut microbiome and the MS immunophenotype.
The altered microbes may play a role in disease-related
immunological changes, or MS-related changes in physiology
may drive microbial alterations.Methanobrevibacter, for example,
is recovered more frequently from individuals with constipation-
variant irritable bowel disease52; while we excluded patients with
irritable bowel disease from our study, it is possible, for example,
that subtle changes in gut motility or in the enteric nervous
system in MS patients or co-existing constipation may produce
conditions favourable for the growth of this microbe. Second, our
findings could be influenced by cohort-specific confounders.
To minimize the effects of confounders, we used strict
exclusion criteria eliminating the potential influence of
antibiotics, pregnancy or other autoimmune or gastrointestinal
conditions. Medications taken before the window of our
study—such as prior courses of steroids—may also influence
gut microbial populations. Furthermore, MS patients often
consume alternative diets that might favour the growth of
particular microbial niches53. Although we did not find any large
differences in dietary intake in our cohort, more sensitive assays
may reveal dietary variation that may be responsible for the
observed changes in the gut microbiome in our disease

population. Although the methodology used to collect stool
samples was relatively uniform, variability in time of sample
collection and interval of previous dietary intake may have also
contributed to changes in microbes recovered. While age, gender
and BMI have been previously shown to drive changes in the
microbiome, our multi-factorial model suggests that these factors
did not confound the observed microbial differences between the
groups. Although we did not find a relationship between changes
in the gut microbiome and clinical parameters such as disease
duration or disability, most of our patients had low levels of
disability (average EDSS 1.2). Future studies with larger cohorts
and longitudinal collection of samples will be required to
investigate these clinical associations, including subjects with
progressive forms of the disease. Third, we analysed the
microbiota using primers targeting the 16S rRNA gene. While
this is useful for providing taxonomic information, shotgun
metagenomic, metatranscriptomic and metabolomic profiling of
faecal samples may reveal changes in the abundance of microbial
genes, their expression or the presence of microbial metabolites
that would complement phylogenic and taxonomic data. Finally,
our study is limited by the fact that we collected samples after
disease onset. It is possible that critical changes in the gut
microbiome in MS may occur in early or preclinical stages of
disease. For example, in type 1 diabetes, changes in the gut
microbiome were apparent before the onset of illness in high-risk
individuals with the concomitant appearance of anti-islet
antibodies54. Investigation of the microbiota in paediatric or
early-onset MS may provide further evidence of associations
between the composition of the gut microbiome and MS
pathogenesis.

In summary, we have found alterations of the human gut
microbiome in MS that correlate with changes in the immune
transcriptome and treatment. It is possible that treatment strategies
of MS in the future may include therapeutic interventions designed
to affect the microbiome such as probiotics, faecal transplantation
and delivery of constituents of organisms isolated from the
microbiome10, although more work is required. In addition,
characterization of the gut microbiome in MS may provide
biomarkers for assessing disease activity and could theoretically
be an avenue to prevent MS in young at-risk populations.

Methods
Study population. Relapsing–remitting MS patients were recruited from the
Partners MS Center at Brigham and Women’s Hospital and healthy subjects from
the Brigham and Women’s Hospital PhenoGenetic project (http://dejager_lab.
bwh.harvard.edu/?page_id=2317). Untreated patients were treatment naive or with
no steroid treatment in the previous month, no beta-interferon/glatiramer acetate
treatment in the previous 3 months, and no other treatments over the prior 6
months. None of the MS patients had an active relapse at the time of sampling.
Patients with a history of using other immunosuppressive medications including
teriflunomide, cyclophosphamide, mitoxantrone, rituximab, intravenous
immunoglobulin, daclizumab, basiliximab, azathioprine, methotrexate or
mycophenolate mofetil were excluded. Treated patients in the cohort were those
who had received beta-interferon or glatiramer acetate for at least 6 months.
Exclusion criteria for both MS subjects and healthy control subjects were as follows:
no antibiotic use in the prior 6 months; no probiotic use; corticosteroids; history of
gastroenteritis; or travel outside of the country in the prior month. No history of
irritable bowel syndrome, bowel surgery, inflammatory bowel disease or other
autoimmune disease. Pregnancy was also an exclusion criteria. A dietary survey
was administered to all subjects before collection of samples (Supplementary
Table 3). The protocol was approved by the Partners Human Research Committee
and informed consent was obtained from all subjects.

Sample collection. Stool samples were obtained from patients by providing them
with stool collection containers. We used a consistent methodology for processing
and storage of all samples. Subjects collected a single-sample produced at any time
of day with no specific dietary restrictions. Collection containers were then placed
in boxes with provided ice packs for immediate shipment to our laboratory via
overnight delivery at a maintained temperature of 0 �C. On receipt of samples, they
were frozen at � 80 �C until DNA extraction55. Samples were only subjected to a
single free-thaw cycle.
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Preparation of DNA and sequencing protocols. For Roche 454 pyrosequencing,
DNA was extracted using the PowerSoil DNA Isolation kit (MO BIO Laboratories,
Carlsbad, CA, USA) with the Human Microbiome Project modifications to the
manufacturer’s protocol56. DNA quality and yield were evaluated via agarose gel
and Qubit fluorometer (Life Technologies Corporation, Carlsbad, CA, USA). The
16S rRNA gene libraries were generated by the Center for Metagenomics and
Microbiome Research at Baylor College of Medicine, using the V3–V5 (357F/926R)
primer in accordance with standard Human Microbiome Project protocols55. The
16S rRNA libraries were sequenced by the Human Genome Sequencing Center at
Baylor College of Medicine using a Roche 454 GS FLXþ instrument (Roche,
Indianapolis, IN) operated with Titanium chemistry.

For Illumina MiSeq 16S rRNA sequencing, methods were adapted from the
protocol developed for the NIH-Human Microbiome Project55. Briefly, bacterial
genomic DNA was extracted using the MO BIO PowerSoil DNA Isolation Kit (MO
BIO Laboratories). The 16S rRNA V4 region was amplified by PCR and sequenced
on the MiSeq platform (Illumina) using the 2� 150 bp paired-end protocol. The
primers used for amplification contain adaptors for MiSeq sequencing and dual-
index barcodes so that the PCR products may be pooled and sequenced directly57.
Sequencing was performed at the Human Genome Sequencing Center at Baylor
College of Medicine.

16S rRNA sequencing data preprocessing. Sequencing of the 105 human stool
samples on the Roche 454 GS FLXþ instrument generated 1,426,326 total raw
reads. Raw reads were processed using the mothur software package (v.1.34.2)14
(ref. 15), which performs demultiplexing and denoising, quality filtering, alignment
against the ARB Silva reference database of 16S rRNA gene sequences, and
clustering into OTUs (at 97% identity; Supplementary Fig. 1). In total, 4317 OTUs
were generated. After filtering OTUs that failed to have a mean number of reads
per sample Z1 in at least one cohort, 426 OTUs were available for further analysis.

Sequencing of the samples on the Illumina MiSeq instrument generated
11,498,168 total forward raw reads. Preprocessing was performed using the mothur
software package. The mothur MiSeq SOP was followed, except we used a custom
Python script to perform base quality trimming (sliding window size of 50 nt with
average quality score 435); this modification was employed to improve the quality
of sequencing reads used for OTU clustering, since the standard mothur SOP
assumes longer sequencing reads than generated by our MiSeq protocol. 10,620
OTUs were generated, with 1,191 OTUs available for further analysis after filtering
using the same procedure as described for the Roche 454 data (Supplementary
Fig 1).

16S rRNA sequencing data analysis. A measure of alpha diversity, the Shannon
entropy58 was calculated for the samples, and the nonparametric Wilcoxon
rank-sum test59 was applied for hypothesis testing. To visualize differences in
overall microbial community structure, the unweighted and weighted UniFrac
measures were calculated between all pairs of samples, and Principal Coordinates
Analysis plots were generated using custom R scripts60. Analysis of molecular
variance was used for statistical hypothesis testing of differences in overall
microbial community structure between cohorts as assessed with the UniFrac
measures61.

To statistically test for differences in the relative abundances of microbial taxa
(phyla or genera) the DESeq2 software package was employed62,63. To control for
covariates (gender, age and BMI) of interest, we used the multi-factorial model in
DESeq2. The DESeq2 multi-factorial model requires categorical values if 41
covariate is included, so we discretized age and BMI values. For BMI, we used
standard World Health Organization (WHO) categories of normal, overweight,
and obese. We reclassified one subject with a BMI of 18.1 as normal, as this is at the
borderline of the WHO underweight classification (o18.5) and would have
resulted in only one subject in the underweight category. For age, we divided the
range of study subjects’ ages (27 to 63 years) into four categories, with each
category spanning a 9-year increment. Eight subjects were missing the clinical data.
These subjects were excluded from analyses controlling for covariates.

For all statistical testing for 16S rRNA data analysis, P values were adjusted for
multiple hypothesis testing using the method of Benjamini and Hochberg64.

To more accurately identify the microorganisms present in samples and their
phylogenetic relationships to known species, the pplacer software package was used
to perform phylogenetic placement16. Pplacer uses a likelihood-based methodology
to place short sequencing reads of 16S rRNA amplicons on a reference tree, and
also generates taxonomic classifications of the short sequencing reads using a least
common ancestor-based algorithm. The reference tree required for phylogenetic
placement was generated using full-length or near full-length (41,200 nt) 16S
rRNA sequences of type strains from the Ribosomal Database Project (RDP)65.
9,563 16S rRNA sequences were downloaded from RDP-11-1, representing 8,719
type strains with 375 sequences from Archaea and 9,188 sequences from Bacteria
strains. Filtering was performed using custom Python scripts with the following
criteria: (1) only one sequence per species (if the species had more than one
sequence, then the longest sequence was chosen); (2) non-environmental species
(using key words); (3) no sequences with unclear taxonomic lineage information;
(4) no redundant sequences. 7,890 16S rRNA sequences were retained for
constructing the phylogenetic tree. Multiple sequence alignment was performed
using Muscle66. Per the pplacer manual (http://matsen.github.io/pplacer/

generated_rst/pplacer.html), the 16S rRNA reference tree was constructed using
FastTree with parameter ‘-nt –gtr’ (ref. 67). FastTree infers phylogenetic trees
using an approximate maximum likelihood-based approach, and generates local
support values to estimate the reliability of each split in the tree by using the
Shimodaira–Hasegawa test on the three alternate topologies (NNIs) around that
split, counting the fraction of 1,000 resamples that support a split over the two
potential NNIs around that node. Local support values of 40.95 are considered to
strongly support splits, and those 40.70 are considered to moderately support
splits. To generate the phylogenetic placement figures in the main manuscript
(Supplementary Figs 9 and 10), representative sequences for each species within the
genus of interest were chosen (the most abundant unique sequence assigned to that
species by pplacer).

Methane breath testing. A separate cohort of subjects was utilized for methane
breath testing. The inclusion and exclusion criteria used to recruit patients was
identical to that described above. Breath samples were collected from subjects after
an overnight fast. All subjects brushed their teeth following the 8-hour fast then
produced end-expiratory breath samples into provided collection tubes. Collection
tubes were sent to Commonwealth Labs (Salem, MA) where gas chromatography
was performed to assess the presence of exhaled methane as described previously26.

Immunologic assays. The Methanobrevibacter smithii type strain (ATCC 35061)
was cultured at the University of Massachusetts using methods previously
described68. Assesment of antibodies against M. Smithii was performed
by ELISA. Lysates of Methanobrevibacter were prepared from sonicates of
Methanobrevibacter cultures. PBMCs were isolated as previously described69.
PBMCs were stimulated with Methanobrevibacter smithii, tetanus toxoid or
anti-CD3/CD28 in 15 healthy donors and 14 MS patients. Methanobrevibacter
smithii was cultured in a ratio of 1 bacteria to 1, 10, 100 or 1,000 PBMCs.
Thymidine incorporation was measured 4 days following stimulation. Cytokine
production was measured by Luminex assay (Miltenyi Biotec). Monocytes and
T cells were sorted from PBMCs from 20 MS patients and 20 healthy controls (see
below) using a Miltenyi Biotec (Alburn, CA) selection kit. Total RNA was extracted
using Norgen RNA purification kits (Norgen Biotek Corp., norgenbiotek.com).
NanoString expression of immune genes was detected by NanoString array
(nCounter, Gene expression code set, Human Immunology kit) as previously
described69.

Statistical analyses of gene expression and microbiome associations. T cells
and monocytes were sorted from PBMCs from 20 MS patients and 20 healthy
subjects. These participants were chosen from the larger cohort by selecting 10 MS
patients with the highest Methanobrevibacter relative abundance, 10 MS patients
with the lowest Methanobrevibacter relative abundance, 10 healthy subjects with
the highestMethanobrevibacter relative abundance and 10 healthy subjects with the
lowest Methanobrevibacter relative abundance. Of these samples, T cells and
monocytes from two MS patients and two healthy subjects either had low viability
of low recovery of RNA thus these samples were excluded from further analysis.
Count data were normalized using the nSolver Analysis software (Nanostring),
significant differences were detected by t-test and P values were adjusted for
multiple comparisons using the Benjamini–Hochberg correction to assess
significance at the 0.05 level.

Pathway annotations were conducted using the Ingenuity Pathway Analysis
(Qiagen) and canonical pathways that had an activation score 41.5 or o� 1.5
in either T cells or monocytes were reported. Spearman’s correlations between
microbial abundance and immune gene expression was calculated in the R
statistical framework70 using the cor.test in the stats package and plotted using
the ellipse package71.

Data availability. The high-throughput sequence data have been deposited in the
National Center for Biotechnology Information (NCBI) BioProject database with
project number PRJNA321051. The data from the 16S rRNA sequencing on the
MiSeq and 454 platforms have been deposited in the NCBI Sequence Read Archive,
and linked to the mentioned BioProject number. T-cell and monocyte gene
expression data obtained using the Nanostring immunology panel have been
deposited in the NCBI Gene Expression Omnibus (GEO) database under accession
number GSE81279. The authors declare that all other data supporting the findings
of this study are available within the article and its Supplementary Information
files, or from the corresponding author on request.
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